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Box header looks like this

In my reviews of transport demand and revenue projec-
tions for investor-financed road and rail projects, I am 
frequently presented with econometric models. Typical 
uses are for forecasting traffic or ridership in a simple, 

brownfield corridor with limited alternatives or to grow demand 
matrices (trip tables) in the context of broader network models.  

The narrative that accompanies these pivotal growth models 
ranges from near-zero to a deep-dive into the econometric analy-
sis of cross-section and panel data, complete with a battery of 
t-statistics and p-values in support. The aim of the latter is clearly 
to demonstrate that serious scientific analysis is in play; credibil-
ity through complexity – and woe betide any mere mortal who 
dares venture there. Yet, a look under the hood suggests that all 
may not be as it first appears when one reflects on exactly what 
is being done and why.

DATA TRANSFORMATIONS
Take a simple example. Your consultant claims that the observed 
growth in car trips in the vicinity of a toll road can be explained 
entirely by the recent performance of GDP. As the variables 
(vehicle trips and GDP) employ different scales, they are nor-
malised to a common starting point using indices – typically to 
a base of 100 – for comparison and analytical purposes. After 
all, it is the relative (not the absolute) changes in the variables 
across time that are important.

The next step is to cast the growth model as a log-log for-
mulation by calculating the natural logs of the dependent and 
independent variables. This is done despite the absence of any 

text justifying this choice of data transformation or explaining 
why alternative approaches have been rejected. Log transforma-
tions are easy to apply and are certainly popular in economics. 
They are widely used, particularly when the relationships being 
examined are non-linear in the parameters. The transformation 
converts multiplicative relationships into additive ones; allowing 
for exponential (compound growth) trends to be explained by 
linear models. If you have a variable, such as tram ridership that 
increases at a constant or near-constant percentage rate, the log 
of that variable will grow as a linear function of time.

However, a key reason for the popularity of log transforma-
tions is that the estimated coefficients in log regressions have 
a nice interpretation. The coefficients measure the percentage 
change in y (trips) that occurs in response to  a certain percent-
age change in x (GDP). In other words, they are elasticities – and 
elasticities are simple to explain and apply.

However, such transformations need to be applied cautiously 
and appropriately.  For example, the log-log model assumes a 
constant elasticity over all values of a data set – whereas in the 
transportation sector we generally observe elasticities, such as 
price elasticities, that change at different tariff levels. And the 
results of standard statistical tests performed on transformed 
data simply may not apply to the original, non-transformed data.

STATISTICAL MISREPRESENTATION
One impact of adopting the approach outlined above is that it 
exaggerates the model’s goodness-of-fit. The resulting coefficient 
of determination is often spectacular (R-squared > 0.95) – see 
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Figure 1, lifted directly from a consultant's report. This is an 
immediate red flag. Whereas high coefficients of determina-
tion may be observed in the physical sciences, anyone dealing 
with human behaviour (social scientists) will be more familiar 
with values, as widely reported in the literature, generally sitting 
around 0.5 – or lower.

The objective of the exercise appears to be to get as high an 
R-squared as possible. Thus, having supposedly demonstrated 
their model’s credibility and outstanding performance, the 
consultants can move unchallenged from model estimation to 
forecasting using predicted values for their explanatory vari-
ables. I’m not going to dwell here on the uncertainties (and 
sources of error) introduced at this stage, but I will point out 
that if a high R-squared is the goal then this is invariably math-
ematically achievable. 

However, as Harvard Professor Gary King points out (‘How 
Not to Lie with Statistics’, 1986), this objective is not the same 
as that for which regression analysis was designed: “The pur-
pose of regression analysis … is to estimate interesting popula-
tion parameters (regression coefficients in this case). The best 
regression model usually has an R-squared that is lower than 
could be obtained otherwise.  … strategies to increase your 
R-squared will add nothing to your analysis … and nothing useful 
in explaining your results to others. (This) general strategy of 
analysis will likely destroy most of the desirable properties of 
regression analysis.”

Notwithstanding, transportation consultants use high 
R-squared values to trumpet their modelling capabilities and 
give client comfort. Often, unguarded (and unwise) comments 
follow about predictive ability, but let’s ignore that for now. 
The point is that the R-squared is being misrepresented. The 
statistical significance of such regressions is used as if it is 
supportive of correct model specification and strong causal 
relationships. However, the high significance is typically only 
because the variables (vehicle trips, GDP or whatever) have 
upward trends – and that is what is being picked up. Seasonal 
dummies and/or other binary variables established to account 
for any data inconveniences simply serve to further flatter 
the model’s fit.

EXAMPLE
To demonstrate this, I set up a simple example which readers can 
recreate in a spreadsheet. It takes less than 10 minutes.

Preparing the Data
Create 20 years of annual random data for two variables  
(A & B): 
A [=RANDBETWEEN(-3,3)/100]; and 
B [=RANDBETWEEN(-5,5)/100].  

When plotted, these variables (of course) suggest no relation-
ship. They are entirely random. Regress one against the other (see 
Figure 2) or calculate the correlation coefficient (or Pearson’s 
R) and the results will confirm that the variables are unrelated 
and uncorrelated.

I selected random numbers in the -5 percent to +5 percent 
range, as this degree of variation – around a long-term trend – is 
often observed in real life data.

I then introduce two growth trends with modest percentage 
growth rates (2 percent and 3 percent), again often observed, 
and transform the variables into indices starting with a base of 100 
and successively applying the resulting growth. An extract from 
the spreadsheet is shown in Figure 3. The indices are labelled 
A+ and B+ respectively.
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Year Random Numbers Growth Indices                 

A B +2% +3% A+ B+

0 100 100

1 -1.0% 1.0% 1.0% 4.0% 101 104

2 -2.0% -4.0% 0.0% -1.0% 101 103

3 2.0% 1.0% 4.0% 4.0% 105 107

4 0.0% -4.0% 2.0% -1.0% 107 106

5 1.0% 1.0% 3.0% 4.0% 110 110 

FIG.3
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Goodness of fit of the regressions
All the three regressions are characterized by 
a satisfactory goodness of fit – that is, by high 
values of the coefficient of determination:

• Cars: R2 = 99.19%
• Light commercial vehicles: R2 = 96.65%
• Heavy goods vehicles: R2 = 96.91%

4.20

FIG.1
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This is effectively the starting point for transportation consult-
ants. They have several variables with growth rates that oscillate 
from period to period around some longer-term trend, which 
they transform into indices.

Analysing the data
As mentioned earlier, a common practice – at this stage – is to 
apply log-log transformations. At first glance, this appears to be 
reasonable. As I’ve introduced constant growth rates (as opposed 
to constant growth) the underlying trends will be multiplicative 
i.e. exponential.  

Logging introduces linearisation.  It converts exponential into 
linear trends, making the transformed data more suitable for 
fitting with linear regression models (next step).

Figure 4 shows what happens when you now run a linear 
regression of one of the transformed variables against the other.

Lo and behold, a very strong correlation appears with a client-
pleasing R-squared of 0.94 – yet, this is entirely spurious. The 
goodness-of-fit statistic is merely capturing the internal trends, 
both of which are upward. However, in the absence of further 
information, Figure 4 would be enough to convince anyone that 
A and B are very strongly correlated indeed.

In truth, one trended time series regressed against another will 
often reveal a strong, but spurious, relationship – and the use of 
log transformations does nothing to alter this fact. This is due to 
a mutual dependency on the passing of time. It is time – known 
as the confounding variable – that correlates the two series. The 
internet is awash with examples of this phenomenon, many of 
which are comical. Correlating per-capita cheese consumption 
with the number of engineering doctorates awarded, for example, 
reveals an R-squared of 0.96 (http://www.tylervigen.com/spurious-
correlations). But, this is no laughing matter when trying to forecast 
travel demand, which lies at the very heart of the valuation process 
used when bidding for transportation concessions. 

Recall that we started this illustrated example by creating 
entirely random variables yet, very quickly, we entered the murky 

world of spurious correlation and seductive explanatory charts.  
If, instead, we examine the growth rates of our two variables – 

discussed below – by calculating, for example, ln(A+)(t) – ln(A+)
(t-1), the spurious relationship simply disappears (Figure 5).

INTEGRITY & TRANSPARENCY 
Despite what transportation consultants are doing in practice, 
the books on my shelf suggest that the appropriate statistical 
treatment of trending (i.e. non-stationary) variables is to esti-
mate the relationship between the changes or growth rates of the 
dependent and independent variables. This de-trending removes 
the underlying impact of time – the confounding variable – 
allowing for the variations in one series to be contrasted with 
the variations in others and possible causality to be examined. 
This is where analysis needs to be focused. Inconveniently, it 
will show much noisier relationships than the log-log approach 
(lower R-squared’s) however it is much better for model identi-
fication (selecting the right macroeconomic variables to use).  

The choice of which predictors to use – and the non-trivial 
challenge of sourcing reliable forecasts for those at the appropri-
ate level of spatial disaggregation – is difficult enough without 
being distracted by goodness-of-fit statistics which, although 
presentationally pleasing, are simply an artefact of method.  

From the perspective of the transportation investor, an 
important part of technical due diligence is reproducibility. 
For cornerstone assumptions (such as growth expectations) 
we should be able to replicate what our consultants have done. 
They need to make all their data and econometric models avail-
able for cross-examination so that we can clearly understand 
the process – what and why – and assess output integrity and 
reliability. This traditionally hasn’t happened in the past. We 
should insist on it in the future.  n
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